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Abstract: To simulate new strategies for designing effective drugs against bird flu, we have carried 
out extensive studies by using various computer-aided drug design tools. Molecule AG7088 was first 
docked to the active site of H5N1 avian influenza neuraminidase (PBD code: 2HTY). The results 
thus obtained were compared with those by docking zanamivir (Relenza) and oseltamivir (Tamiflu) 
to the same receptor, respectively. It has been found that the compound AG7088 has better binding 
energy than zanamivir and oseltamivir. Thus, it was adopted as a template to perform the similarity 
search of 392,698 druggable compounds in order to find the leading candidates for the next step of 
modeling studies. Nine analogs of AG7088 were singled out through a series of docking studies. Finally, the molecular 
dynamics simulation technique was utilized to investigate into the binding interactions between the H5N1 receptor and the 
nine analogs, with a focus on the binding pocket, intermolecular surfaces and hydrogen bonds. This study may be used as 
a guide for mutagenesis studies for designing new inhibitors against H5N1. 
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INTRODUCTION 

 The outbreak of H5N1 avian influenza, commonly called 
“bird flu”, has raised concerns that this virus might acquire 
the ability to pass readily among humans and cause influenza 
pandemics [1]. The main presenting features are fever, 
pneumonitis, lymphopenia and diarrhea [2]. The major bio-
logical concern is that the virus may acquire the ability to 
mutate and develop resistance to existing drugs. 

 Hemagglutinin (HA) and neuraminidase (NA) are the 
two antigenic glycoprotein enzymes located on the surface of 
the influenza virus [1, 3-5]. HA mediates the cell-surface 
sialic acid receptor binding to initiate virus infection. After 
virus replication, NA removes the sialic acid from the virus 
and cellular glycoproteins to facilitate virus release, spread-
ing infection to new cells. Recently, more attention are fo-
cused on NA than HA as a main target for drug design 
against influenza, even though HA is easier to be separated 
and purified [5]. This is because inhibition of NA can delay 
the viral release from the surface of the infected cells [6, 7]. 
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 There are two existing drugs designed based on targeting 
NA: one is zanamivir (commercially named “Relenza”) and 
the other is oseltamivir (commercially named “Tamiflu”). 
That zanamivir is administered by inhalation has limited its 
usage for treating the elderly because it may induce bron-
chospasm [8] 1393. Oseltamivir is an orally active influenza 
neuraminidase inhibitor approved for treatment and preven-
tion of influenza virus infection. But recently some osel-
tamivir-resistant mutant neuraminidases have been reported 
from influenza A virus isolated from the influenza-infected 
humans treated by oseltamivir [9-12]. The present study was 
initiated in an attempt to provide useful insights to deal with 
the drug-resistance problem. 

METHODS 

 Many useful insights for drug design can be acquired 
through the approach of structural bioinformatics [13] and 
other bioinformatics tools (see, e.g., [14-17]). In the present 
study, the following structural bioinformatics techniques 
were utilized.  

Molecular Docking 

 Molecular docking has been increasingly utilized in the 
course of drug design (see, e.g., [18-38]). In the present 
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study, the Metropolis algorithm developed by Morris et al.
[39] was used to find the most favorable binding interaction. 
The ligands were flexible during the docking process. The 
program generates a diversified set of conformations by 
making random changes to the ligand coordinates. Using the 
simulated annealing approach [40], the search for the favor-
able binding configurations was conducted within a specified 
3D (dimensional) docking box, when a new conformation of 
the ligand was generated. Both methods seek to optimize the 
purely spatial contacts as well as electrostatic interactions. 
The interaction energy was calculated using the electrostatic 
and van der Waals potentials. In all our computations, the 
CHARMM22 [41] force field parameters were used. The 
binding pocket of H5N1-NA for the ligand is defined by 
those residues that have at least one heavy atom (i.e., other 
than hydrogen) with a distance 5 Å from a heavy atom of the 
drug molecule [13, 42-46]. A similar definition has been 
used for the binding pocket of ATP in the Cdk5-Nck5a* 
complex [47] that has later proved quite useful in identifying 
functional domains and stimulating the relevant truncation 
experiments [48]. 

 Three ligands, AG7088, zanamivir and oseltamivir, were 
selected for the initial docking studies. AG7088 was devel-
oped by Pfizer and is currently in clinical trials for the treat-
ment of rhinovirus, a pathogen that can cause the common 
cold; while zanamivir and oseltamivir are two anti-influenza 
drugs on the market.  

Molecular Dynamics 

 To reflect the dynamic feature of the interaction beween 
the H5N1 receptor and its ligand, one of the feasible 
approaches is to use the molecular dynamics (MD) tool [49], 
which can simulate the motions in a system consisting of the 
target protein and its ligand under specified ensembles. In 
the current study, the energy favorable structures derived by 
the aforementioned molecular docking studies were further 
investigated with the MD tool triggered by breaking hydro-
gen bonds and making events of the ligand and receptor in-
teractions. The simulations were performed at 300K and the 
normal atmospheric pressure. All the backbone atoms were 
fixed to maintain the correct protein structure with side 
chains being allowed to move freely. Some fictitious degree 
of freedom was added to the system to represent the motion 
of heat in and out of the system. This would generate a series 
of conformations in the important phase space, providing 
configuration and momentum information for each relevant 
atom, from which the thermodynamic properties of the sys-
tem could be computed. The trajectory represents an explora-
tion of the energy landscape with ligands sitting in a specific 
domain of the receptor. The above approach by combining 
the molecular docking operation with the MD simulation 
would provide very useful clues for the energy landscape of 
binding sites of H5N1-NA with the ligands and their interac-
tion modes. 

Similarity Search 

 Based on the binding conformation discovered via mo-
lecular docking into the crystal structure of H5N1-NA (PDB 
code 2HTY) [50], a similarity search was conducted to virtu-
ally screen for the leading compounds: 392,698 candidates 

were filtered and 556 potential leading compounds were ob-
tained. Virtual screening has the advantages of being less 
expensive and easier to perform than the real experiments in 
searching for leading compounds [19], and hence has been 
widely used to find initial leading structures from a large 
collection of compounds. The MACCS structural keys, typed 
atom distances, typed atom triangles, typed graph distances, 
typed graph triangles were used to fingerprint the molecules. 
The fingerprints of the template molecule and each of these 
compounds in the database were calculated and was stored 
internally as a vector of indices, where the presence of an 
index in the vector indicates the presence of the correspond-
ing substructure in the molecule. Once a fingerprint is de-
rived from a chemical structure, a metric is needed to com-
pare the fingerprint. Overlap determines the strictness of the 
search. All similarity metrics return a number between 0 and 
100%, where 100% means the most similar. If the similarity 
threshold was assigned as 75%, 566 conformers were re-
trieved as an outcome of the similarity search. To further 
narrow down the investigation scope for molecular docking, 
a check for druggable rules was performed. At last, 143 po-
tential leading compounds were screening out for further 
study later. 

Screening Criteria 

 Binding energy (electrostatic and van der Waals interac-
tions) was used as the criterion for ranking the binding state. 
Moreover, we also considered the other factors, such as the 
location of ligand, hydrophobic effects, steric complemen-
tarities and the size of the ligand. Ten top binding conform-
ers were found that all have better binding interaction with 
the receptor than zanamivir and oseltamivir. Meanwhile, the 
intermolecular hydrogen bonds and electrostatic interaction, 
whose effects had already been counted in computing the 
binding energy, were further investigated in order to single 
out useful information for drug design. 

RESULTS AND DISCUSSIONS 

Comparison between AG7088 and Existing Drugs  

 The results of the binding free energies are shown in Ta-
ble 1, from which we can see that the binding energy of 
H5N1-NA with AG7088 is stronger than those of the exist-
ing drugs (zanamivir and oseltamivir). These findings have 
been further supported by the MD simulation studies later. A 
close view of the binding interaction is given in Fig. (1A). 
The AG7088 molecule is placed in active site. The binding 
pocket [43, 47] consists of residues ARG98, VAL129, 
ASP131, ARG132, SER160, ASN202, ILE203, ARG205, 
THR206, GLU208, PRO226, SER227, ASN228, GLU258, 
ARG273, ASN275, ALA323, TYR324, GLY325, ARG348, 
TYR382, ARG410, PRO411, and THR418. As shown in 
Fig. (1A), the AG7088 molecule should have enough room 
to move around in the pocket due to its tiny volume. The 
AG7088 molecule is tethered to the H5N1-NA complex by 
six hydrogen bonds (green lines) which may provide useful 
information for in-depth understandings on the mechanism 
of the binding between the H5N1-NA and the AG7088 
molecule. The detailed atoms forming the hydrogen bonds 
are given as follows. There are two hydrogen bonds holding 
the AG7088 molecule with the receptor: one is between an 
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oxygen atom on H5N1-NA and the H atom on ARG132 of 
the AG7088 molecule (2.63 Å), and the other is between the 
same oxygen atom linked to another H atom on ARG132 
(2.42 Å), respectively. The other four hydrogen bonds in-
volve the interactions of AG7088 with ARG348 and 
ASN202 of the receptor.  

 The binding conformation of H5N1-NA and zanamivir is 
shown in Fig. (1B). The corresponding binding pocket con-
sists of ARG98, GLU99, ASP131, ARG132, ARG205, 
GLU208, ARG273, and ARG348. In comparison with the 
case of AG7088, the hydrogen bonding interaction of 
zanamivir with H5N1-NA is much weaker.  

 Likewise, we also obtained the binding interaction of the 
receptor with oseltamivir, as shown in Fig. (1C). Now the 
binding pocket consists of ARG98, ASP131, ASN202, 
ILE203, ARG205, GLY225, PRO226, SER227, ASN228, 
GLU257, GLU258, ARG273, and ASN275. Also, the hy-
drogen bonding interaction of oseltamivir with H5N1-NA is 
much weaker, compared with AG7088. 

Searching for Potential Leading Compounds 

 The 143 candidates screened from the 392,698 druggable 
compounds by using AG7088 as a template were docked to 
H5N1-N1. Listed in Table 1 are the 15 energy most favor-
able binding conformations. It is interesting to note that 
ARG98, ASP131, ARG132, ILE203, ARG205, SER227, 
GLU257, ARG273 occur in all these binding modes as high-
lighted in Table 2. These findings are very useful for under-
standing the binding mechanism and providing clues for fur-
ther modification. Shown in Table 3 are all the possible hy-
drogen bonds in the binding interactions concerned.  

Analysis of Useful Features of Candidates 

 As shown in Fig. (2A), seven of the nine binding interac-
tion modes share a common feature; i.e., with a five mem-
bers ring and a six members ring, indicating that such a pat-
tern is indispensable for the ligand-receptor recognition. 
Their binding energies are more favorable than others, sug-
gesting that the framework shared by them can be used to 
design more potent inhibitors against H5N1. Also, as shown 

Table 1. List of Interaction Energies (kcal/mol) Obtained be Docking Ligands to the Crystal Structure of H5N1 (PDB code 2HTY) 

Rank Molecules E (Electrostatic) E (van der Waals) E (Binding) 

* AG7088 -11.29 -24.60 -35.89 

* zanamivir -7.41 -23.11 -30.52 

* osteltamivir -11.42 -20.45 -31.87 

1 1-6 -11.72 -32.41 -44.13 

2 2-7 -15.34 -22.58 -37.92 

3 1-8 -10.61 -27.51 -37.12 

4 1-7 -7.19 -29.43 -36.621 

5 3-2 -12.39 -24.13 -36.52 

6 1-9 -14.95 -20.98 -35.93 

7 3-10 -14.31 -20.96 -35.27 

8 2-12 -8.07 -25.33 -33.40 

9 3-11 -7.63 -24.10 -31.73 

Fig. (1). A close view of the binding interaction of H5N1-NA with (A) AG7088, (B) zanamivir, and (C) oseltamivir: the residues of H5N1-
NA are in stick drawing, the ligand is in ball and stick drawing, and the hydrogen bonds are represented by the green dotted lines. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this paper). 
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in Table 2, seven of the nine molecules share the feature with 
the following 11 residues occurring in their binding pockets: 
ARG98, GLU99, ASP131, ARG132, ILE203, ARG205, 
GLU208, SER227, GLU257, ARG273, and TYR324.  

 As shown in Table 1, the molecule labeled as 1-6 has the 
most favorable binding energy. Therefore, the framework of 
1-6 was adopted as the main compound template for drug 
design.  

Structure Modification 

 Considering the aforementioned findings, we propose an 
inhibitor model, as shown in Fig. (2B). Our efforts were fo-
cused on how to make the structure modification (SM) for 
the inhibitor template to make its derivatives even better than 
the template itself in inhibiting H5N1-NA. To realize this, 
the problem was approached from the following five regions, 
as marked in Fig. (2B). (A) It can be seen from Fig. (3A) that 

Table 2. Residues in Forming the Active Cavity of the Crystal Structure of H5N1-NA for the 9 Molecules Screened Out, Respec-

tively, which is Obtained by MD Simulation 

Mode Residues
a

1-6 ARG98, GLU99, LEU114, VAL129, ASP131, ARG132, ARG136, TRP159, SER160, ILE203, LEU204, ARG205, THR206, 

GLU208, SER227, GLU257, GLU258, ARG273, ASN275, ALA323, TYR324, TYR382, THR418  

3-11 ARG98, GLU99, LEU114, ASP131, ARG132, ARG136, TRP159, SER160, ILE203, LEU204, ARG205, GLU208, SER227, 

GLU257, GLU258, SER227, GLU257, GLU258, ARG273, ASN275, ALA323, TYR324, GLY325, TYR382 

1-8 ARG98, GLU99, LEU114, ASP131, ARG132, ARG136, TRP159, SER160, ILE203, ARG205, THR206, GLU208, SER227, 

GLU257, ARG273, ASN275, ALA323, TRY324, TRY328

1-9 ARG98, GLU99, ASP131, ARG132, ILE203, ARG205, GLU208, SER227, GLU257, GLU258, ARG273, ASN275, ALA323,

TYR324, GLY325, ARG348, TYR382 

3-10 ARG98, GLU99, ASP131, ARG132, TRP159, SER160, ILE203, LEU204, ARG205, THR206, GLU208, SER227, GLU257, 

GLU258, ARG273, TYR324, ARG348, TYR382 

2-12 ARG98, GLU99, LEU114, ASP131, ARG132, ARG136, TRP159, SER160, ILE203, ARG205, GLU208, SER227, GLU257,

GLU258, ARG273, ASN275, ALA323, TYR324, GLY325, GLY382 

1-7 ARG98, GLU99, LEU114, ASP131, ARG132, ARG136, TRP159, SER160, ILE203, LEU204, ARG205, GLU208, SER227, 

ASN228, GLU257, GLU258, ARG273, ASN275, ALA323, TYR324, GLY325, ARG348, TYR382

3-2 ARG98, ASP131, ARG132, ASN202, ILE203, ARG205, GLY225, PRO226, SER227, ASN228, GLU257, GLU258, ARG273,
ASN275, ALA323 

2-7 ARG98, GLU99, VAL129, ASP131, ARG132, TRP159, SER160, ASN202, ILE203, ARG205, GLU208, SER227, GLU257, 
ARG273, ASN275, ALA323, TYR324, ARG348, TYR382 

a Residue in bold-face type means having hydrogen bond interactions with the corresponding ligand. Residue in blue means the occurrence in all binding cavities.  

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this paper).

Table 3. List of the Possible Hydrogen Bonds Formed by the 9 Molecules Screened Out with the Crystal Structure of H5N1-NA 

(PDB code 2HTY) 

Molecules Number of H Bonds Residues
a

3-11 6 GLU99, ASP131, ARG132, SER160, ILE203, ALA323 

1-6 5 ARG136, TRP159, GLU257, TYR324 

1-8 5 GLU99, ARG132, TRP159, TYR324, TYR382 

2-7 5 ASP131, SER227, ASN275, ALA323 

1-9 4 GLU99, GLU208, ARG273, ALA323 

2-12 4 GLU99, ASP131, GLU257, ALA323 

1-7 4 ARG98, ARG136, TYR382 

3-10 3 ARG98, ARG205 

3-2 3 ARG132, SER227, ARG273 

a Residue with bold-face type means that it has two possible hydrogen bonds with the corresponding ligand. 
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some part of the receptor surfaces near region A is hydro-
philic that can not match with the hydrophobic group. To 
improve their binding interaction, a logic strategy is to mod-
ify the region A by adding some hydrophilic groups, such as 
–OH(SM A-1), -NH2(SM A-2), -CH3(SM A-3), -SH(SM A-
4), and -PH2(SM A-5) in this position. To analyze the im-
pact by the modifications, we found that the average binding 
free energy for the aforementioned derivatives was more 
favorable than that of the original template molecule, indicat- 

ing that it would improve the binding interaction by adding a 
hydrophilic group into the position A. (B) Change the chemi-
cal group -CH3 in region B in turn by -C2H5 (SM B-1), -
C3H7 (SM B-2), -H (SM B-3) while keeping all the other 
parts constant. This modification can reduce the size of the 
compound and make it able to move deeper into the binding 
pocket so as to maximize its interaction with the receptor, as 
shown in Fig. (3B). (C) Change the chemical group -OH in 

A

B

Fig. (2). Illustration to show (A) seven small molecule structures, and (B) the template model where A,B,C,D, and E are the five regions to 
be modified to generate new inhibitors for investigation. (For a color illustration of this figure, please see the web version of this paper). 
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region C in turn by –NH2 (SM C-1), -SH (SM C-2), -PH2 
(SM C-3), -CH3 (SM C-4) while keeping all the other parts 
constant. By comparing the docking free energy, it can be 
observed that introducing the functional groups of SM C 
could make the ligand more active. The best result was 
achieved by following the SM C-1 scheme. (D) Change the 
chemical group -O in region D in turn by –NH (SM D-1), -
CH2 (SM D-2), -C=O (SM D-3), while keeping all the other 
parts constant. It was found by the molecular docking studies 
that the van der Waals and electrostatic interactions for the 
original region D were 0.08 kal/mol and -0.02 kal/mol. The 
corresponding interactions for SM D-1, SM D-2, and SM D-
3 were -0.30 and -0.10kal/mol, -0.04 and 0.01 kal/mol, -0.27 
and -0.03 kal/mol, respectively, implying that SM D-1 or SM 
D-1 scheme would be the best in favoring the binding inter-
action and suggesting that this kind of modification should 
be taken into account for further processing in drug design. 
(E) Region E or SM-E. Change the chemical group -NH in 
region E in turn by –CH2 (SM E-1), -O (SM E-2), while 
keeping all the other parts exactly unvaried. However, this 
kind of group changes in region E (see Fig. (2B)) did not 
strengthen the binding interaction, implying that the original 
chemical group -NH was more favorable for the binding 
interaction and should be kept.  

 Finally, the molecules were assembled according to the 
aforementioned modifying schemes. The dockings were per-
formed to rank their priorities as drug candidates according 
to the binding energy. It was observed that the analog ob-
tained by modifying the template compound using the 
schemes SM A-3, SM B-3, SM C-1 and SM D-1 simultane-
ously could get the most competitive compound with the 
most favorable total docking free energy. As shown in Fig. 
(3C), such a modified molecule can very nicely match with 
both the hydrophilic and hydrophobic surfaces of the recep-
tor.  

ADITIONAL REMARKS  

 To provide the information that is often needed in target-
ing a particular organelle [51] or reprogramming cells for 
gene therapy [52, 53] but is not immediately available, the 
following procedures are briefly described to derive the rele-
vant data. Shown in Fig. (4) is the entire sequence of the 
H5N1 avian influenza neuraminidase with the accession 
number of Q6DPL2 where the segment with X-ray PDB 
coordinates determined in 2HTY [50] is highlighted by an 
underline. Using the web server Cell-PLoc [54] at http:// 
chou.med.harvard.edu/bioinf/Cell-PLoc/ or Virus-PLoc [55] 
at http://chou.med.harvard.edu/bioinf/virus/ and the input 
data of Fig. (4), we can find the H5N1 protein is located at 

Fig. (3). A close view of the binding interactions of H5N1-NA with (A) the model template molecule, (B) both the model molecule and the 
modified molecule (pink) obtained by following SM B-3 scheme, and (C) the best modified molecule obtained by simultaneously following 
the SM A-3, SM B-3, SM C-1 and SM D-1 schemes, where the lipophilic and hydrophilic surfaces are colored in green and blue, respec-
tively. The small molecules are in the ball-stick representation and the residues of the receptor are in the stick representation. Oxygen, nitro-
gen, carbon and hydrogen atoms are colored in red, blue, gray and white, respectively. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this paper). 

Fig. (4). The sequence (447 residues) of the H5N1 avian influenza neuraminidase in FASTA format, where Q6DPL2 right after the greater-
than (“>”) symbol in the 1st line represents the accession number of the entire sequence, while the underscored segment (387 residues) corre-
sponds to the sequence whose 3D structure has been determined [50] with the PDB code of 2HTY. 
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“membrane” or “plasma membrane”. It was identified as a 
single-pass type II membrane protein by using the web 
server MemType-2L [56] at http://chou.med.harvard.edu/ 
bioinf/MemType/. Furthermore, it was found its main en-
zyme functional class belonging to hydrolase family and sub 
functional class to glycosylase family by using the web 
server EzyPred [57] at http://chou.med.harvard.edu/bioinf/ 
EzyPred/. If needed, its signal peptide can also be predicted 
by the web server Signal-CF [58] or Signal-3L [59]. 

 It is instructive to note that in recent several years M2 
mutations caused most strains of flu virus type A to become 
amantadine- and rimantadine-resistant, which is probably a 
response to overuse of the drugs [60]. To find out how and 
why flu virus has learned to so effectively evade amantadine 
and rimantadine, scientists have been seeking the structure of 
their molecular target, the ion-channel protein M2 on the flu 
virus surface. M2 is a membrane-spanning ion channel that 
conducts only protons and is required for the viral replication 
and infectivity. However, for decades the 3D structure of 
M2, the “holy grail” for structural biologists and virologists, 
has proved very difficult to analyze [60]. Fortunately, the M2 
protein channel of influenza A virus was recently success-
fully determined by NMR [61]. This represents the first pro-
ton channel that has ever been analyzed structurally. Such a 
breakthrough will certainly provide a solid base, shedding 
new light on this area and stimulating new strategies to deal 
with endemic outbreaks of influenza and future pandemics.  

CONCLUSION 

 The binding interactions of H5N1-NA with the drug 
molecule were investigated by molecular docking and MD 
simulation. Nine compounds were singled out from a series 
of molecular docking operations. The details of the interac-
tions between the receptor and ligands were analyzed, and 
their binding pockets were explicitly defined. These findings 
may provide useful insights or at least a footing for design-
ing new inhibitors against H5N1. It has not escaped our no-
tice that the recent milestone work in determining the 3D 
structure (2RLF.pdb) of the flu virus proton channel (M2 
channel) and revealing its subtle mechanism by the NMR 
studies [61] has provided very useful information for finding 
drugs against bird flu [60] from a different strategy. Further 
studies along such a line are currently under way in our lab.  
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